Note

A Note on Variational–Iterative Schemes Applied to Burgers' Equation

This paper proposes a technique for solving non-linear differential equations such as those which govern viscous fluid flow. The aim is to isolate a linear self-adjoint operator, e.g., the Laplacian, from the rest of the equation and then to construct a variationally equivalent formulation which can be solved iteratively. The test example chosen is the steady-state version of Burgers' equation. The results are discussed and measures of convergence of the method are obtained. \dot{c}_1 1985 Academic Press, Inc

1. INTRODUCTION

Complementary variational principles have been introduced by Kato [8] and others up to Walpole [9] for the equation

$$T\phi = f \tag{1}$$

in a suitably chosen real Hilbert space H where T is a completely continuous self-adjoint operator and f is some function belonging to H. Further work done by Burrows and Perks [5, 6] is an application of these earlier ideas. These principles provide upper and lower bounds for $\langle \phi | f \rangle$ where $\langle \rangle$ denotes the inner product of H and the theory has been applied to quantum mechanical scattering problems.

Arthurs and Robinson [4], Arthurs [1], Arthurs and Anderson [2] and Arthurs and Coles [3] have also introduced complementary variational principles for the solution of equations of the form

$$T\phi = f(\phi) \tag{2}$$

where f may be a non-linear function of ϕ . These provided upper and lower bounds to a functional when certain conditions are satisfied. Under suitable boundary conditions, complementary extremum principles can be found when

$$T - \frac{df}{d\phi} > 0 \tag{3}$$

or

$$T - \frac{df}{d\phi} < 0. \tag{4}$$

0021-9991/85 \$3.00 Copyright (: 1985 by Academic Press, Inc. All rights of reproduction in any form reserved. More can be said about (3) and (4) when the operator T is known to be positive or negative, e.g., if T is positive then the condition $df/d\phi < 0$ is sufficient for (3) to hold, but it is not necessary.

In later work Burrows and Perks [7] have extended their linear theory to deal with the non-linear equation (2). A variational-iterative scheme is used to deal with the problems provided by Eq. (2) so that the simpler linear theory is applied to a sequence of equations, the solutions of which converge to the solutions of Eq. (2).

By considering the functional

$$J(\varDelta, \Phi) = \langle \Phi \mid T\Phi \rangle - 2\langle \Phi \mid f \rangle + \varDelta \langle T\Phi - f \mid T\Phi - f \rangle$$
(5)

where Δ is a real constant, Burrows and Perks demonstrate that the real quantity

$$S = \min_{\psi \in H} \left\{ J(\Delta_1, \omega_p) - J(\Delta_2, \psi) \right\}$$
(6)

provides a measure of the convergence criteria. Here ψ denotes the exact solution, Δ_1, Δ_2 refer to the minimum and maximum principles, respectively, and ω_p denotes the limit of the sequence of trial functions $\{\omega_{n,p}\}$ containing p variational parametes for each iterate. In some cases bounds for $\langle \phi | f(\phi) \rangle$ are required where $T\phi = f(\phi)$ and the calculations also provide approximate bounds for the quantity.

In applying this work to the solution of non-linear equations, the basic idea is to attempt to rearrange the non-linear equation

$$A\phi = f(\phi) \tag{7}$$

into the form (2) where T is self-adjoint on the space considered and such that T has a discrete spectrum. Then we iterate with the sequence of equations

$$T\psi_{n+1} = f(\boldsymbol{\Phi}_{n+1}) \tag{8}$$

obtaining Φ_{n+1} as a variational approximation to ψ_{n+1} . Under certain conditions the sequence $\{\Phi_{n+1}\}$ will converge to ϕ . A discussion of acceleration of convergence and choice of Φ_0 to start the procedure is given by Burrows and Perks [5]. To produce convergence Eq. (1) is often rewritten as

$$T\phi = bT\phi + (1-b)T\phi \tag{9}$$

and Eq. (8) now becomes

$$T\psi_{n+1} = T\phi_n + b\{f(\phi_n) - T\phi_n\}$$
(10)

where b is a constant chosen to produce rapid convergence.

In this paper we demonstrate how these principles can be used by applying them to the steady-state case of Burgers' equation which is an important equation in fluid dynamics. In fact, Burgers' equation has been extensively used in the past as a test example for much numerical work.

276

2. Application to Burgers' Equations

Because of its similarity to the Navier-Stokes equation Burgers' equation, namely,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = v \frac{\partial^2 u}{\partial x^2}$$
(11)

where u = u(x, t) in some domain and v is a parameter, often arises in the mathematical modelling used to solve problems in fluid dynamics involving turbulence. The limitations of the analytical solution for certain values of the parameter v due to slow convergence means that numerical approaches become necessary. In order to simplify matters we show how the variational principles already mentioned can be applied to the steady-state version of Burgers' equation, namely,

$$u\frac{du}{dx} = v\frac{d^2u}{dx^2}, \qquad x \ge 0$$
(12)

under the boundary conditions

$$u(0) = 0, \quad u(\infty) = -2v.$$
 (13)

(Exact solution is $u = -2v \tanh x$.)

The substitution $y = 1 - e^{-x}$ transforms the infinite domain $[0, \infty]$ to the finite domain [0, 1] and the boundary conditions become

$$\phi(0) = 0, \qquad \phi(1) = -2 \qquad (0 \le y \le 1) \tag{14}$$

on making the substitution $\phi = u/v$.

Equation (12) then becomes

$$-\frac{d^2\phi}{dy^2} = -y\frac{d^2\phi}{dy^2} - (1+\phi)\frac{d\phi}{dy}$$
(15)

with exact solution

$$u = \frac{2\{(1-y)^2 - 1\}}{(1-y)^2 + 1}.$$
(16)

This solution also satisfies the condition $\phi^1(1) = 0$.

We now attempt to find the variational solution of Eq. (15) over the domain $0 \le y \le 1$ and compare results with the exact solution.

Consider the Hilbert space of functions which satisfy the boundary conditions $\phi(0) = 0$, $\phi^{1}(1) = 0$ and let the inner product be defined by

$$\langle \phi_1 \mid \phi_2 \rangle = \int_0^1 \phi_1(y) \phi_2(y) \, dy.$$

Then the operator $T = -d^2/dy^2$ is symmetric since

$$\langle \phi_2 \mid T\phi_1 \rangle = \langle T\phi_2 \mid \phi_1 \rangle.$$

The eigenvalues of T are defined by

$$\frac{-d^2\phi_i}{dy^2} = \lambda_i\phi_i \tag{17}$$

which, on imposing the boundary conditions, leads to

$$\lambda_{i} = \left[\frac{(2i+1)\pi}{2}\right]^{2} \qquad (i = 0, 1, 2, ...)$$
(18)

and

$$\phi_i = a_i \sin \frac{(2i+1)\pi y}{2}.$$
 (19)

This would suggest that we take $\phi_0(y) = a_0 \sin(\pi y/2)$ as a first approximation in the variational approach.

We rewrite (15) in the form (2) where

$$f(\phi) = -y \frac{d^2 \phi}{dy^2} - (1 + \phi) \frac{d\phi}{dy}.$$
 (20)

The eigenvalues λ_i of T are discrete and $\lambda_i \ge (\pi/2)^2$ so we will take $\Delta = \Delta_1 = 0$ and $\Delta = \Delta_2 = -(2/\pi)^2$ in $J(\Delta, \phi_{n+1})$ to obtain minimum and maximum principles, respectively, at the unique stationary point $\phi_{n+1} = \psi_{n+1}$. We use

$$J(\varDelta_2, \psi) \leqslant -\langle \phi \mid f \rangle \leqslant J(\varDelta_1, \phi) \tag{21}$$

where $J(A_1, \Phi)$ represents a minimum principle at the unique stationary point $\Phi = \phi$ with

$$\Delta = \Delta_1 \geqslant -\frac{1}{\lambda_i} \qquad \text{for all } i$$

and $J(\Delta_2, \psi)$ represents a maximum principle at the unique stationary point $\psi = \phi$ with

$$\Delta = \Delta_2 \leqslant -\frac{1}{\lambda_i} \quad \text{for all } i.$$

This gives

$$J(\varDelta_2, \psi) \leqslant -\langle \phi \mid f \rangle \leqslant J(\varDelta_1, \Phi)$$
(22)

and in our particular case

$$J\left(-\frac{4}{\pi^2}, \boldsymbol{\Phi}_{n+1}\right) \leqslant -\langle \psi_{n+1} \mid f(\phi_n) \rangle \leqslant J(0, \boldsymbol{\Phi}_{n+1}).$$
(23)

Defining the functional by

$$G(\Phi_{n+1}) \equiv J(0, \Phi_{n+1})$$
(24)

we first apply this variational-iterative approach using the one-parameter trial function

$$\omega_{n,1} = a_{n,1} \sin \frac{\pi y}{2}$$

to Eq. (15) subject to the boundary conditions (14).

3. DISCUSSION OF RESULTS

The results obtained for the one-parameter trial function suggest that we require more complex trial functions and the calculations were repeated with trial functions of the form

$$\omega_{n,m} = \sum_{j=1}^{m} a_{n,m}^{(j)} \sin \frac{(2j-1)}{2} \pi y$$
(25)

where the form of $\omega_{n,m}$ is suggested by the eigenfunctions in Eq. (19).

In each case the melasure of convergence is provided by

(a)
$$\{G(\phi) - G(\phi_p)\},\$$

(b) $S_p = -\frac{4}{\pi^2} \langle T\omega_p - f(\omega_p) \mid T\omega_p - f(\omega_p) \rangle$
(26)

where ϕ_p is the best *p*-parameter variational approximation obtained.

It is important to explain the algorithm used to find the *p*-parameter variational approximation ϕ_p as the procedure used, although simple, has not been used before in this type of work. Starting from the (p-1)-parameter trial function given by Eq. (25) with m = p - 1 the steps is the procedure are as follows:

- (i) Let i = p 1; *i* is a counter;
- (ii) Form the *p*-parameter trial function

$$\Phi_{n,p} = \omega_{n,p} + a_{n,p} \sin \frac{(2i+1)\pi y}{2}$$

where $a_{n,p}$ is to be determined in the next step;

(iii) Use the normal *p*-parameter variational approximation

$$\Phi_p = \lim_{n \to \infty} \Phi_{n,p}$$

and calculate the corresponding measure of convergence S_p , say;

(iv) If $S_p \ge S_{p-1}$ increase *i* by 1 and return to step (ii); S_{p-1} is the measure of convergence given by $\omega_{p-1} = \lim_{n \to \infty} \omega_{n,p-1}$;

(v) When $S_p < S_{p-1}$ stop since we have found the final *p*-parameter variational approximation Φ_p .

This approach yields approximate variational solutions ϕ_p containing *p*-parameters whose fit to the exact solution increases with *p*. The approach is inductive. To find ϕ_p we use the approach based on the functional

$$G(\omega_{n,p}) = \langle \omega_{n,p} \mid T\omega_{n,p} \rangle - 2 \langle \omega_{n,p} \mid \tilde{f}(\omega_{n-1,p}) \rangle$$
(27)

where

$$\bar{f}(\omega_{n-1,p}) = (1-b) T\omega_{n-1,p} + bf(\omega_{n-1,p})$$
(28)

and proceed in the usual way with a suitable choice of the initial values for the iterative scheme. This ensures rapid convergence of the variational scheme.

This method has been used to generate variational approximations Φ_p of increasing accuracy, as measured by S_p , for p = 3 up to p = 7. Table I shows the variations of the measures of convergence S_p and $\{G(\phi) - G(\phi_p)\}$ with p. Clearly the variational method is converging. This is confirmed by Table II which shows the variation of the error in the *p*-parameter approximation $\{\phi(y) - \phi_p(y)\}$ with y = 0(0.1)1.

The encouraging results obtained for the steady-state case of Burgers' equation gives confidence in the possible application of complementary variational principles to Burgers' equation itself and this work is in progress.

TABLE I

Variation of the Measures of Convergence $\{G(\phi) - G(\phi_p)\}$ and S_p with p, where S_p Is Given by Eq. (26), and ϕ_p Is the Best p-Parameter Variational Approximation of the Text

р	$\{G(\phi)-G(\phi_p)\}$	S _p
1	+ 3.8681	- 1.1296
2	-0.1185	-0.1059
3	-0.0416	-0.0725
4	-0.0160	-0.0576
5	-0.0045	-0.0488
6	-0.0016	-0.0429
7	0.0004	- 0.0394

TABLE II

У	ει	ε2	ε3	E4	£7
0.1	+ 1969	+118	+ 25	+27	+ 34
0.2	+ 3646	-67	- 9	-20	- 36
0.3	+ 4960	- 174	-53	-20	-5
0.4	+ 5874	-250	-115	- 84	- 58
0.5	+ 6389	- 281	-164	-113	- 87
0.6	+6556	- 276	- 149	- 98	-69
0.7	+6474	- 257	86	-43	-9
0.8	+6271	- 242	52	+ 8	+6
0.9	+ 6081	-234	74	-15	-12
1.0	+6006	-232	95	- 50	-23

The Variation of the Error $\varepsilon_p(y) = \{\phi(y) - \phi_p(y)\} \times 10^4$ -of ϕ_p , the Best *p*-Parameter Variational Approximation Discussed in the Text

References

- 1. A. M. ARTHURS, "Complementary Variational Principles," Oxford Univ. Press (Clarendon), Oxford, 1970.
- 2. A. M. ARTHURS AND N. ANDERSON, Quart. J. Mech. Appl. Math. 35 (3) (1977), 337.
- 3. A. M. ARTHURS AND C. W. COLES, J. Inst. Math. Appl. 7 (1977), 324-330.
- 4. A. M. ARTHURS AND P. D. ROBINSON, Proc. Cambridge Philos. Soc. 65 (1969), 535.
- 5. B. L. BURROWS AND A. J. PERKS, J. Phys. B 10 (1977), 1591-1600.
- 6. B. L. BURROWS AND A. J. PERKS, J. Phys. B 12 (1979), 2687-2695.
- 7. B. L. BURROWS AND A. J. PERKS, J. Phys. A 14 (1981), 797-808.

8. T. KATO, Math. Ann. 126 (1953), 253.

9. L. J. WALPOLE, J. Inst. Math. Appl. 14 (1974), 113.

RECEIVED: March 15, 1983; REVISED: June 28, 1983

J. CALDWELL

School of Mathematics, Statistics and Computing Newcastle upon Tyne Polytechnic Newcastle upon Tyne, England

> R. SAUNDERS P. WANLESS

Department of Mathematics and Computer Studies, Sunderland Polytechnic, Sunderland, England