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Note 

A Note on Variational-Iterative Schemes 
Applied to Burgers’ Equation 

This paper proposes a technique for solving non-linear differential equations such as those 
which govern viscous fluid flow. The aim is to isolate a linear self-adjoint operator, e.g., the 
Laplacian, from the rest of the equation and then to construct a variationally equivalent for- 
mulation which can be solved iteratively. The test example chosen is the steady-state version 
of Burgers’ equation. The results are discussed and measures of convergence of the method are 
obtained. (1 1985 Academic Press. Inc 

I. INTRODUCTION 

Complementary variational principles have been introduced by Kato [S] and 
others up to Walpole [9] for the equation 

T4=f (1) 

in a suitably chosen real Hilbert space H where T is a completely continuous 
self-adjoint operator and f is some function belonging to H. Further work done by 
Burrows and Perks [S, 61 is an application of these earlier ideas. These principles 
provide upper and lower bounds for (4 1 f) where ( ) denotes the inner product 
of H and the theory has been applied to quantum mechanical scattering problems. 

Arthurs and Robinson [4], Arthurs [ 11, Arthurs and Anderson [2] and Arthurs 
and Coles [3] have also introduced complementary variational principles for the 
solution of equations of the form 

Td =f(d) (2) 

where f may be a non-linear function of 4. These provided upper and lower bounds 
to a functional when certain conditions are satisfied. Under suitable boundary con- 
ditions, complementary extremum principles can be found when 

or 

T- df - < 0. 
4 
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More can be said about (3) and (4) when the operator T is known to be positive or 
negative, e.g., if T is positive then the condition df/d4 < 0 is sufficient for (3) to 
hold, but it is not necessary. 

In later work Burrows and Perks [7] have extended their linear theory to deal 
with the non-linear equation (2). A variational-iterative scheme is used to deal with 
the problems provided by Eq. (2) so that the simpler linear theory is applied to a 
sequence of equations, the solutions of which converge to the solutions of Eq. (2). 

By considering the functional 

J(A,@)=(@I T@)-2(01f)+d(T@-j-1 T@-f) (5) 

where d is a real constant, Burrows and Perks demonstrate that the real quantity 

s=,m,‘n, {WI, WJ-J(A*, II/,> (6) 

provides a measure of the convergence criteria. Here II/ denotes the exact solution, 
A r, A, refer to the minimum and maximum principles, respectively, and wp denotes 
the limit of the sequence of trial functions {w~,~} containing p variational 
parametes for each iterate. In some cases bounds for (4 ( f(d)) are required where 
Tc,$ =f(b) and the calculations also provide approximate bounds for the quantity. 

In applying this work to the solution of non-linear equations, the basic idea is to 
attempt to rearrange the non-linear equation 

Ad =f(d) (7) 

into the form (2) where T is self-adjoint on the space considered and such that T 
has a discrete spectrum. Then we iterate with the sequence of equations 

T* n+,=f(@jn+,) (8) 

obtaining @, + , as a variational approximation to tin + , . Under certain conditions 
the sequence (Qn + , } will converge to 4. A discussion of acceleration of con- 
vergence and choice of Q0 to start the procedure is given by Burrows and Perks 
[S]. To produce convergence Eq. (1) is often rewritten as 

and Eq. (8) now becomes 

Td=bTqS+(l-6) T4 (9) 

W tJ+1 = W,+btfMJ-04,) (10) 

where b is a constant chosen to produce rapid convergence. 
In this paper we demonstrate how these principles can be used by applying them 

to the steady-state case of Burgers’ equation which is an important equation in fluid 
dynamics. In fact, Burgers’ equation has been extensively used in the past as a test 
example for much numerical work. 
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2. APPLICATION TO BURGERS' EQUATIONS 

Because of its similarity to the Navier-Stokes equation Burgers’ equation, 
namely, 

au au ah 
z+“z=“Q (11) 

where u = u(x, t) in some domain and v is a parameter, often arises in the 
mathematical modelling used to solve problems in fluid dynamics involving tur- 
bulence. The limitations of the analytical solution for certain values of the 
parameter v due to slow convergence means that numerical approaches become 
necessary. In order to simplify matters we show how the variational principles 
already mentioned can be applied to the steady-state version of Burgers’ equation, 
namely, 

du d=u 
u-&=v-$, x>,o (12) 

under the boundary conditions 

u(0) = 0, u( co) = -2”. (13) 

(Exact solution is u = -2v tanh x.) 
The substitution y = 1 - e --x transforms the infinite domain [0, co] to the finite 

domain [0, l] and the boundary conditions become 

d(O) =o, d(l)= -2 (O<y<l) (14) 

on making the substitution 4 = u/v. 
Equation (12) then becomes 

(15) 

with exact solution 

u=w-Y)2-~I 
(l-4’)2+1 . (16) 

This solution also satisfies the condition d’( 1) = 0. 
We now attempt to find the variational solution of Eq. (15) over the domain 

0 f y < 1 and compare results with the exact solution. 
Consider the Hilbert space of functions which satisfy the boundary conditions 

4(O) = 0, d’( 1) = 0 and let the inner product be defined by 
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Then the operator T= -d’jd~l~ is symmetric since 

The eigenvalues of T are defined by 

which, on imposing the boundary conditions, leads to 

~ = (2i+l)rr 2 4 1 2 
(i=O, 1, 2,...) 

(17) 

(18) 

and 

qii = ai sin 
(2if 1)7rJ, 

2 . (19) 

This would suggest that we take d,(y) = a,, sin(rcy/2) as a first approximation in the 
variational approach. 

We rewrite (15) in the form (2) where 

The eigenvalues A, of T are discrete and I., > (742)’ so we will take A = 4, = 0 and 
A=A,= -(2/702 in J(d.d,+,) t o obtain minimum and maximum principles, 
respectively, at the unique stationary point d,, + , = II/, + , . We use 

J(A,,$)b -(dIf)<JJ(A,,b) (21) 

where J(d,, @) represents a minimum principle at the unique stationary point 
@=c$ with 

A=A,2 -4 for all i 
A, 

and J(d,, II/) represents a maximum principle at the unique stationary point $ = 4 
with 

This gives 

1 

A=A2G -7, 
for all i. 

Jb42, Ic/)G -(4 I .f> dJ(A,, @I (22) 
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and in our particular case 

J(-$R+,), -(tin+l If(4n)>~J(o~~,+,). (23) 

Defining the functional by 

G(@.+,)=JJ(Ov @,,+,I (24) 

we first apply this variational-iterative approach using the one-parameter trial 
function 

W n.1 = a n,, sin “‘- 
2 

to Eq. (15) subject to the boundary conditions (14). 

3. DISCUSSION OF RESULTS 

The results obtained for the one-parameter trial function suggest that we require 
more complex trial functions and the calculations were repeated with trial functions 
of the form 

W n,n, = ,z, a$l, sin v ICJ’ 

where the form of w,,,,, is suggested by the eigenfunctions in Eq. (19). 
In each case the melasure of convergence is provided by 

(a) (G(4) - G(d,)), 

(b) s,= -; u-w,-ffw,), no,-f(w,)) 

(25) 

(26) 

where tip is the best p-parameter variational approximation obtained. 
It is important to explain the algorithm used to find the p-parameter variational 

approximation #P as the procedure used, although simple, has not been used before 
in this type of work. Starting from the (p - 1)-parameter trial function given by 
Eq. (25) with m = p - 1 the steps is the procedure are as follows: 

(i) Let i= p- 1; i is a counter; 
(ii) Form the p-parameter trial function 

where an,p is to be determined in the next step; 
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(iii) Use the normal p-parameter variational approximation 

QP = lim @n,p 
n-m 

and calculate the corresponding measure of convergence S,,, say; 
(iv) If S, 2 S,- i increase i by 1 and return to step (ii); S,- I is the measure of 

convergence given by w,- 1 = lim w,,~-, ; n-cc 
(v) When S,, <S,- I stop since we have found the final p-parameter 

variational approximation GP. 

This approach yields approximate variational solutions dP containing p- 
parameters whose lit to the exact solution increases with p. The approach is induc- 
tive. To find dI, we use the approach based on the functional 

where 

G(o,,,) = <wtp I Tw~.,)-~(w,,, I&LI.~)) (27) 

fbn-,.J=U -b) T~~-,,,+WL,.~) (28) 

and proceed in the usual way with a suitable choice of the initial values for the 
iterative scheme. This ensures rapid convergence of the variational scheme. 

This method has been used to generate variational approximations QP of increas- 
ing accuracy, as measured by S,, for p = 3 up to p = 7. Table I shows the variations 
of the measures of convergence S, and {G(d) - G(4,)) with p. Clearly the 
variational method is converging. This is confirmed by Table II which shows the 
variation of the error in the p-parameter approximation {b(y) -9,(v)} with 
~=o(o.l)l. 

The encouraging results obtained for the steady-state case of Burgers’ equation 
gives confidence in the possible application of complementary variational principles 
to Burgers’ equation itself and this work is in progress. 

TABLE I 

Variation of the Measures of Convergence {G(d) - G((,)} and 
S,, with p, where S,, Is Given by Eq. (26), and 4, Is the Best p- 

Parameter Variational Approximation of the Text 

P {G(d)-G(4,)) SP 

1 +3.8681 - 1.1296 
2 -0.1185 -0.1059 
3 -0.0416 - 0.0725 
4 -0.0160 - 0.0576 
5 -0.0045 -0.0488 
6 -0.0016 - 0.0429 
7 -0.0004 - 0.0394 
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TABLE II 

The Variation of the Error E~( y) = {d(y) - d,( y)} x 104qf I&,, 
the Best p-Parameter Variational Approximation Discussed in the Text 

0.1 +1969 Cl18 +25 f27 f34 
0.2 +3646 -67 -9 -20 -36 
0.3 +4960 -174 -53 -20 -5 
0.4 +5874 -250 -115 -84 -58 
0.5 +6389 -281 -164 -113 -87 
0.6 +6556 -216 -149 -98 -69 
0.1 +6474 -257 -86 -43 -9 
0.8 +6271 -242 -52 +8 f6 
0.9 +6081 -234 -74 -15 -12 
1.0 +6006 -232 -95 -50 -23 

62 83 E.3 
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